Über N- $(\alpha$ -Aminoacyl)-sulfonamide, 3. Mitt.

Von

K. Hohenlohe-Oehringen und L. Call

Aus dem Institut für Organ. u. Pharm. Chemie, Universität Innsbruck

(Eingegangen am 17. Januar 1968)

DL-3,4-Dibenzyloxy-α-methyl-phenylalanin wurde aus 3,4-Dibenzyloxy-benzaldehyd nach Standardmethoden hergestellt. Sein N-Carboxy-Anhydrid wurde in DMSO mit den Natriumsalzen von p-Toluolsulfonamid und Methansulfonamid zu den N-Acyl-sulfonamiden umgesetzt, die durch katalytische Hydrierung in die vom "Aldomet" sich ableitenden N-Acyl-Sulfonamide übergeführt wurden.

DL-3.4-Dibenzyloxy- α -methyl-phenylalanine was prepared from 3.4-Dibenzyloxybenzaldehyde by standard methods. Reaction of its N-carboxy anhydride in *DMSO* with sodium p-toluene-sulfonamide and sodium methanesulfonamide yielded the corresponding N-acyl sulfonamides, and subsequent catalytic hydrogenation the N-acyl sulfonamides derived from "aldomet".

Für 3,4-Dihydroxy-α-methyl-phenylalanin ("Aldomet") wurde eine Reihe kommerzieller Synthesen¹ ausgearbeitet, deren gemeinsame Basis der 3,4-Dimethoxy-benzaldehyd ist. In der letzten Stufe ist jeweils die Entfernung der O-Methylgruppen durch energische Säurebehandlung vorgesehen. Zum Aufbau von mit Aldomet N-acylierten Sulfonamiden² sind wegen der zu erwartenden Solvolyseempfindlichkeit der N-Acyl-Sulfonamid-Gruppierung O-Schutzgruppen vorzusehen, die die Freisetzung der phenolischen Hydroxylgruppe durch Hydrogenolyse gestatten.

G. A. Stein, H. A. Bronner und K. Pfister, J. Amer. Chem. Soc. 77, 700 (1955); J. D. A. Johnson und E. M. Gibbs, Brit. Pat. 995 299, June 16 (1965); Chem. Abstr. 63, 13410 (1965).

² Mh. Chem. **99**, 1289 (1968).

DL-O,O-Dibenzyl-aldomet (V) wurde in Anlehnung an publizierte Synthesen des O,O-Dimethyl-aldomet aus 3,4-Dibenzyloxy-benzaldehyd (I) über das Nitro-styrol (II) (Vers. 1), Dibenzyloxy-phenylaceton (III)

(Vers. 2), Hydantoin (IV) (Vers. 3) und alkalische Hydrolyse von IV (Vers. 4) dargestellt.

Zum Schutz der Aminogruppe und zur Aktivierung der Carboxylfunktion wurde in Abwandlung unseres Standardverfahrens² das O,O-Dibenzyl-aldomet (V) durch Reaktion mit Carbobenzoxychlorid und

anschließende Behandlung mit PBr₃ in das wie erwartet ³ stabile, weder feuchtigkeitsempfindliche noch zur Polymerisation neigende N-Carboxy-Anhydrid ("Leuchs-Anhydrid" ⁴) (VI) übergeführt (Vers. 5). Dieses gab, mit p-Toluolsulfonamid-natrium bzw. Methansulfonamid-natrium in DMSO behandelt, das N-(3,4-Dibenzyloxy- α -methyl-phenylalanyl)-ptoluolsulfonamid (VII a) bzw. -methansulfonamid (VII b) (Vers. 7). Debenzylierung durch katalytische Hydrierung (Pd/C) in Eisessig lieferte die Zielverbindungen VIII a und VIII b (Vers. 8).

Von dem in der vorangehenden Arbeit⁵ beschriebenen O-Benzyl-N-carbobenzoxy-α-methyl-tyrosin leitet sich ein ebenfalls stabiles, VI entsprechendes "Leuchs-Anhydrid" (IX) ab (Vers. 9), das, mit p-Toluolsulfonamid-natrium in Diglyme umgesetzt, den der Verbindung VIIa entsprechenden Ampholyten gab. Da dieser sich nur schwer reinigen ließ und schlechte analytische Werte lieferte, und da zudem die daraus durch Hydrierung herzustellende, VIIIa entsprechende Verbindung nach unserem Standardverfahren² gut zugänglich ist, wurde auf eine genauere Untersuchung der Reaktion sowie auf die Umsetzung des Leuchs-Anhydrides mit Methansulfonamid-natrium verzichtet.

Die physikalischen Eigenschaften der Verbindungen IV, VI, VIIa, VIIIb, VIIIa, VIIIb und IX sind in Tab. 1 wiedergegeben.

Den Firmen Hoffmann-La Roche AG, Basel und Wien, schulden wir für mannigfache Unterstützung unseren Dank. Prof. Dr. H. Bretschneider, der diese Arbeit ermöglicht und gefördert hat, danken wir herzlich. Die Mikroanalysen wurden unter Leitung von Dr. J. Zak im Institut für Physikalische Chemie der Universität Wien durchgeführt.

Experimenteller Teil

Versuch 1: 3,4-Dibenzyloxy-a-methyl-w-nitro-styrol (II)

96 g 3,4-Dibenzyloxy-benzaldehyd, 6,0 g Nitroäthan, 4,8 ml n-Butylamin und 6 ml Eisessig wurden in dieser Reihenfolge in 270 ml Toluol gelöst und $2\frac{1}{2}$ Stdn. am Wasserabscheider gekocht (Wasserabscheidung 7,3 ml). Das Reaktionsgemisch wurde auf 0° gekühlt und der Kristallisation überlassen. Nach 3stdg. Stehen bei 0° wurde filtriert, mit kaltem Alkohol und dann mit Petroläther gewaschen. So wurden 81,0 g II (gelbe Nadeln) erhalten; aus der auf — 20° gekühlten Mutterlauge schieden sich nach 20 Stdn. weitere 14 g II ab; Gesamtausb. 84% d. Th. Zur Analyse wurde aus Äthanol umkristallisiert, Schmp. = 117°.

C₂₃H₂₁NO₄. Ber. C 73,58, H 5,64, N 3,74. Gef. C 73,72, H 5,95, N 3,88.

³ H. J. Weingarten, J. Amer. Chem. Soc. **80**, 352 (1958).

⁴ H. Leuchs, Ber. dtsch. chem. Ges. 39, 857 (1906).

⁵ Mh. Chem. **99**, 1302 (1968).

$CH_2 - \overset{\mid}{C} - CO - R_4$	$\mathrm{H-N-R_3}$
R_1	R_2
en des Typs	
. Verbindungen des Typs	
Tabelle 1. V	

1														
ζ_1 a		$ m R_{1}^{a} m R_{2}^{a}$	$ m R_{_3}$	R3 R4 10 8	$\mathrm{Schmp.}^{\mathfrak{c}}$	I A	Löslichkeiten dansb.' $Ac A DMF W d. Th$	hkeit A L	en d MF	P M	Ausb.e d. Th.	Summen- formel	Analysenwerte IR-Banden [†] Ber. Gef.	${ m IR} ext{-Banden}^{ m f}$
02		Bz0 $Bz0$	၃=0	C—NH—	188 (A)	и	w	m	g	u	64	$C_{25}H_{24}N_2O_4$ C 72,10 H 5,81 N 6,73	C 72,10 72,25 H 5,81 5,82 N 6,73 7,13	3,10; 5,90
Bz0	_	Bz0	H	Н0	235-240 (A)	\boldsymbol{z}	m	\boldsymbol{s}	B	z	08	$\mathrm{C}_{24}\mathrm{H}_{25}\mathrm{NO}_4$	C 73,62 74,03 H 6,44 6,50 N 3,58 3,61	2,96; 3,06
Bz0	_	Bz0	o-1	-0-	$182 \\ (Di/\ddot{A})$	s	В	8	8	2	75 ($\mathrm{C}_{25}\mathrm{H}_{23}\mathrm{NO}_{5}$	C 71,92 71,76 H 5,56 5,59 N 3,36 3,40	3,10; 5,40; 5,62
VIII a BzO	_	Bz0	田	${ m NHSO}_2T$	$245 \ (DMF/\ddot{A})$	u	w	s	B	u	48 ($48 \mathrm{C_{31}H_{32}N_{2}O_{5}S}$	C 68,35 67,70 H 5,92 5,86 N 5,14 5,13 S 5,88 5,80	2,90; 6,25
VII b BzO	_	Bz0	Ħ	$ m NH-\!\!\!\!-\!\!\!\!-\!\!\!\!\!-SO_2CH_3$	$210-215$ (DMF/\ddot{A})	u	ω	a	B	z .	48 ($ m C_{25}H_{28}N_{2}O_{5}S$	C 64,09 64,46 H 6,02 6,06 N 5,98 5,96 S 6,84 6,31	2,92; 6,27

		The second secon	-	The same of the sa	The second secon	Contract of the Party of the Pa	The state of the party of	-					Management of the last of the			The second secon
Nr.	$ m Nr. ~~R_{1}^{a} ~~R_{2}^{a}$		Ŗ	$ m R_3 ~ R_5^{ m b}$		Schmp.c	₩. ₩	$egin{aligned} Ac \end{aligned}$	Löslichkeiten dusb. A Ac A DMF W d. Th	en d M.Fr. 1	A W d.	$rac{Ausb.^{ m e}}{\%}$ d. Th.	Summen- formel	Analysen Ber.	werte Gef.	Analysenwerte IR-Banden ^r Ber. Gef.
VIII а ОН		H 0	Ħ	NH-	$ m NHSO_2T$	160—170 n (W)	u	3	m	8	a 3) 68) 68	$^{\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{N}_{2}\mathrm{O}_{5}\mathrm{S}}_{\cdot2\mathrm{H}_{2}\mathrm{O}}$	C 50,99 H 6,04 N 7,00 S 8,01 W 9,00	50,78 6,02 7,08 7,96 9,26	2,90; 6,27 6,55; 8,85
						260						J	$\mathrm{C}_{17}\mathrm{H}_{20}\mathrm{N}_2\mathrm{O}_5\mathrm{S}$	C 56,00 55,62 H 5,53 5,68 N 7,69 7,83 S 8,80 8,63	55,62 5,68 7,83 8,63	2,90; 3,15—3,25; 6,25; 6,34; 8,85
Мо читу	ОН	НО	Ħ	NH	$ m NH-SO_2CH_3$	260 (W)	u	m	\mathcal{B}	б	. bui) 02	$70 ext{ C}_{11}\text{H}_{16}\text{N}_{2}\text{O}_{5}\text{S}$	C 45,81 45,42 H 5,60 5,48 N 9,72 9,64 S 11,12 11,03	45,42 5,48 9,64 11,03	3,01; 3,21; 6,30; 6,55; 6,77; 8,95
IX	BzO	Ħ	ŋ=0	0		163—165 w	w	g	g	x	u	S6 C	$\mathrm{C_{18}H_{17}NO_{4}}$	C 69,44 68,83 H 5,50 5,56 N 4,50 4,52	68,83 5,56 4,52	2,98;5,41;5,59;6,22
×	BzO	Ξ	H	$ m NHSO_2\it T$	${}^{8}\mathrm{O}_{2}T$	$217-222 \ (DMF/\ddot{A})$	z	a	m	ı B	2	30 C	$50 \mathrm{C_{24}H_{26}N_{2}O_{4}S}$			2,92;3,20;6,20;8,00

^a Bz = Benzyl; ^b $T = C_6 \text{H}_4 - \text{CH}_3(p)$; ^c der Analysensubstanz, darunter Lösungsmittel, aus dem umkristallisiert wurde; ^d $\ddot{A} = \ddot{A}$ thyläther, Ac = Aceton, $A = \ddot{A}$ thanol, Di = Dioxan, DMF = Dimethylformamid, W = Wasser; ^c Rohprodukt; ^f in KBr.

Versuch 2: 3,4-Dibenzyloxy-phenylaceton (III)

180 g Eisenpulver, 4,5 g FeCl₃, 270 ml Wasser, 95 g II und 180 ml Toluol wurden unter Rühren zum Rückfluß erhitzt, in die kochende Lösung innerhalb 1 Stde. 300 ml konz. HCl zugetropft und weitere 30 Min. gekocht. Nach dem Erkalten wurde zwischen Äther—Wasser verteilt, die org. Phase mit Wasser, NaHCO₃-Lösung und Wasser gewaschen, getrocknet und im Vak. eingedampft. Der Rückstand war ein bräunliches Öl.

Versuch 3: 5-(3,4-Dibenzyloxy-benzyl)-5-methyl-imidazolidin-2,4-dion (IV)

Der Rückstand aus Vers. 2 wurde ohne weitere Reinigung in 900 ml Äthanol gelöst und mit einer warmen Lösung von 270 g Ammoncarbonat und 36 g KCN in 900 ml Wasser vereinigt. Dann wurde 6 Stdn. bei 65—70° mechanisch gerührt. Aus der Suspension begann sich nach einigen Stdn. reichlich IV abzuscheiden; nach Einengen im Vak. auf die Hälfte des Volumens kristallisierte weiteres IV. Die Suspension wurde mit 900 ml Wasser verdünnt, filtriert und mit Wasser gewaschen. Das rohe Kristallisat wurde aus 800 ml Äthanol umkristallisiert, filtriert und mit Äther gewaschen. Die farblosen Nadeln (67,5 g = 64% d. Th., bez. auf II) schmolzen bei 188°. Zur Analyse wurde aus Äthanol umkristallisiert.

 $C_{25}H_{24}N_2O_4$. Ber. C 72,10, H 5,81, N 6,73. Gef. C 72,25, H 5,82, N 7,13.

Versuch 4: 3,4-Dibenzyloxy-α-methyl-phenylalanin (V)

Eine Mischung von 14,8 g IV, 30 g NaOH, 60 ml Wasser und 30 ml Diglyme wurde 24 Stdn. unter Rückfluß erhitzt. Dann wurde auf 60° gekühlt und im Scheidetrichter getrennt. Die bräunliche org. Schicht schied beim Abkühlen auf Raumtemp. das Natrium-Salz von V aus. Die dicke Kristallmasse wurde mit 300 ml Äther aufgerührt, filtriert und mit Äther gewaschen. Das Natrium-Salz wurde in 300 ml Wasser bei 40° gelöst und mit 5proz. Essigsäure unter Rühren auf pH 5 gebracht. Die Aminosäure V wurde abfiltriert und mit Wasser gewaschen. Der Filterkuchen wurde mit 400 ml Äthanol in der Hitze behandelt, wobei Kristallisation einsetzte. Nach Kühlen im Eisbad wurde filtriert, mit kaltem Äthanol und dann mit Äther gewaschen. 11,20 g V (80% d. Th.), Schmp. 220—230° (Zers.) erhalten. Zur Analyse wurde aus viel Äthanol umkristallisiert (Tab. 1).

Versuch 5: 4-(3,4-Dibenzyloxy-benzyl)-4-methyl-oxazolidin-2,5-dion (VI)

67,5 g IV wurden analog Vers. 4 in das rohe Natrium-Salz von V übergeführt. Dieses wurde nach dem Waschen mit Äther in 800 ml Wasser gelöst. Unter Rühren wurden bei Raumtemp. 40 ml Chlorameisensäure-benzylester und 20 g NaOH, in 400 ml Wasser gelöst, in gleichem Maße zugetropft, so daß ein pH von etwa 10—12 eingehalten wurde. Nach beendeter Zugabe wurde noch 15 Min. gerührt und mit HCl auf pH 1 angesäuert. Es wurde 3mal mit je 150 ml Essigester extrahiert, die vereinigten org. Phasen 2mal mit Wasser gewaschen, getrocknet und im Vak. eingeengt. Der Rückstand, ein zähes, bräunliches Öl (ca. 75 g) wurde in 400 ml Äther gelöst. In diese Lösung wurde innerhalb von 10 Min. 20 ml PBr₃, in 200 ml Äther gelöst, eingetragen. Nach 10stdg. Stehen bei Raumtemp. wurde filtriert und mit Äther gewaschen. 58,5 g Rohprodukt gaben beim Umlösen (Tab. 1) 51 g VI (74% d. Th., bez. auf IV), Schmp. 175—181°. Zur Analyse wurde aus Dioxan—Äther umkristallisiert.

Versuch 7: N-(3,4-Dibenzyloxy- α -methyl-phenylalanyl)-p-toluolsulfonamid (VII a) und N-(3,4-Dibenzyloxy- α -methyl-phenylalanyl)-methansulfonamid (VII b)

In eine Lösung von 21 g VI in 40 ml *DMSO* wurden unter Rühren und Kühlen auf 20° innerhalb von 30 Min. 2 Moläquivalente Sulfonamid-natrium eingerührt. Nach weiteren 15 Min. bei 20° wurde in 500 ml Wasser eingerührt, mit eiskalter, verd. Essigsäure angesäuert und mit Essigester extrahiert. Im Falle VIIb fiel das Reaktionsprodukt teilweise aus; die org. Phase wurde 2mal mit Wasser gewaschen und im Vak. eingeengt. Der Rückstand wurde in 200 ml Essigester aufgekocht, nach 2stdg. Stehen bei 0° filtriert und mit Essigester—Äther (1:1) gewaschen. Es wurden 13 g VIIa (48% d. Th.) und 11,2 g VIIb (48% d. Th.) erhalten (Tab. 1).

- Versuch 8: N-(3,4-Dihydroxy- α -methyl-phenylalanyl)-p-toluolsulfonamid (VIII a) und N-(3,4-Dihydroxy- α -methyl-phenylalanyl)-methansulfonamid (VIII b)
- a) 13 g VII b wurden in 300 ml Eisessig suspendiert und nach Zugabe von 5 g 5proz. Pd-Kohle in $\rm H_2$ -Atmosphäre bei 60° bis zum Ende der Wasserstoff-Aufnahme (etwa 2 Stdn.) gerührt. Der Katalysator wurde abfiltriert und der im Vak. erhaltene Eindampfrückstand des Filtrates 2mal aus Wasser umkristallisiert. 8,5 g VIII a (89% d. Th.), Schmp. 160—170° (Zers.). Einige Male wurde VIII a bei der Kristallisation aus Wasser auch in einer ohne Kristallwasser kristallisierenden, bei 260° schmelzenden Modifikation erhalten, die in das Hydrat umgewandelt werden konnte, jedoch nicht umgekehrt. Bei mit dem Dihydrat angestellten Kristallisationsversuchen aus Aceton, Aceton—Essigester, Äthanol, DMF und Dioxan wurden stets Solvate erhalten, die das Solvens selbst durch Trocknen bei $120^\circ/0,01$ mm nicht abgaben (Tab. 1).
- b) 15,7 g VIIb wurde in 300 ml Eisessig nach Zugabe von 5 g 5proz. Pd-Kohle bei 60° unter H₂ gerührt. Hiebei fiel das in Eisessig schwer lösliche VIIIb größtenteils aus. Es wurde filtriert, die Kohle mit dem Niederschlag in 200 ml Wasser suspendiert, zum Sieden erhitzt, filtriert und im Vak. eingeengt. Der Rückstand wurde 2mal aus Wasser umkristallisiert. 6,8 g VIIIb (70% d. Th.), Schmp. 260° (Zers.) (Tab. 1).

VIII a und VIII b sind in Lösung etwas oxydationsempfindlich (Verfärbung nach Violettblau). Beim Kochen der wäßrigen Lösung scheiden sich allmählich schwarze Flocken aus.

Versuch 9: 4-(4-Benzyloxy-benzyl)-4-methyl-oxazolidin-2,5-dion (IX)

4,0 g O-Benzyl-N-carbobenzoxy- α -methyl-tyrosin² wurden in 50 ml absol. Äther suspendiert und nach Zugabe von 2,6 g PBr₃ (3,0 mÄqu.) 12 Stdn. bei Raumtemp. gerührt. Dann wurde filtriert, der Rückstand mit Äther— $P\ddot{A}$ gewaschen. 2,55 g IX (86% d. Th.), Schmp. 155—160° (Tab. 1).

Versuch 10: Umsetzung von IX mit p-Toluolsulfonamid-natrium

2,0 g IX wurden in 10 ml absol. Diglyme mit 2,5 g p-Toluolsulfonamidnatrium (2,0 mÄqu.) am sied. Wasserbad erwärmt. Nach dem Erkalten wurde auf Eis gegossen, mit verd. HCl auf pH 3 angesäuert und filtriert. Der Rückstand wurde zuerst mit Wasser, dann mit Essigester, zuletzt mit Äther gut digeriert. 1,30 g X (50% d. Th.), 200—215°. X ließ sich schwer reinigen und lieferte keine guten analytischen Werte. Die Struktur erscheint vor allem durch das IR-Spektrum (Tab. 1) gesichert.